Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 134(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33912943

RESUMO

Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.


Assuntos
Dineínas , Cinesinas , Citoesqueleto/metabolismo , Dineínas/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Miosinas/metabolismo
2.
J Cell Sci ; 133(12)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376785

RESUMO

Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.


Assuntos
Glaucoma de Ângulo Aberto , Fator de Transcrição TFIIIA , Proteínas de Ciclo Celular , Citocinas/genética , Humanos , Proteínas de Membrana Transportadoras , NF-kappa B/genética , NF-kappa B/metabolismo , Transporte Proteico , Transdução de Sinais , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
3.
Autophagy ; 14(9): 1644-1645, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30058425

RESUMO

Mitochondrial homeostasis is maintained by removing dysfunctional, ubiquitinated mitochondria from the network via PRKN-dependent mitophagy. MYO6, a unique myosin that moves towards the minus ends of actin filaments, forms a complex with PRKN and is selectively recruited to damaged mitochondria by binding to ubiquitin. On the mitochondrial surface, this myosin motor initiates the assembly of F-actin cages, which serve as a quality control mechanism to isolate dysfunctional mitochondria thereby preventing their refusion with neighboring populations. MYO6 also plays a role in the later stages of the mitophagy pathway by tethering endosomes to actin filaments facilitating mitophagosome maturation and autophagosome-lysosome fusion.


Assuntos
Autofagia , Mitofagia , Actinas , Células HeLa , Humanos , Mitocôndrias , Cadeias Pesadas de Miosina , Ubiquitina-Proteína Ligases
4.
Dev Cell ; 44(4): 484-499.e6, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29398621

RESUMO

Mitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations. Loss of MYO6 results in an accumulation of mitophagosomes and an increase in mitochondrial mass. In addition, we observe downstream mitochondrial dysfunction manifesting as reduced respiratory capacity and decreased ability to rely on oxidative phosphorylation for energy production. Our work uncovers a crucial step in mitochondrial quality control: the formation of MYO6-dependent actin cages that ensure isolation of damaged mitochondria from the network.


Assuntos
Citoesqueleto de Actina/metabolismo , Mitocôndrias/patologia , Mitofagia , Cadeias Pesadas de Miosina/metabolismo , Fagossomos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagia , Células HeLa , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Cadeias Pesadas de Miosina/genética , Ligação Proteica , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Traffic ; 17(8): 878-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146966

RESUMO

Myosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy - the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome. Actin networks have also been implicated in structurally supporting the expanding phagophore, moving autophagosomes and enabling efficient fusion with the lysosome. Only a few myosins have so far been shown to play a role in autophagy. Non-muscle myosin IIA functions in the early stages delivering membrane for the initial formation of the autophagosome, whereas myosin IC and myosin VI are involved in the final stages providing specific membranes for autophagosome maturation and its fusion with the lysosome.


Assuntos
Actinas/metabolismo , Autofagia/fisiologia , Citoesqueleto/metabolismo , Miosinas/metabolismo , Fagossomos/metabolismo , Animais , Humanos , Lisossomos/metabolismo
6.
Dis Model Mech ; 7(12): 1335-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25368120

RESUMO

Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington's disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt(140Q/140Q) knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington's disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Vesículas Secretórias/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Homozigoto , Humanos , Proteína Huntingtina , Doença de Huntington , Camundongos , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Rede trans-Golgi/metabolismo
7.
Biochim Biophys Acta ; 1832(12): 2115-26, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23911349

RESUMO

The accumulation of ß-amyloid (Aß) peptide in the brain is one of the pathological hallmarks of Alzheimer's disease and is thought to be of primary aetiological significance. In an unbiased genetic screen, we identified puromycin-sensitive aminopeptidase (PSA) as a potent suppressor of Aß toxicity in a Drosophila model system. We established that coexpression of Drosophila PSA (dPSA) in the flies' brains improved their lifespan, protected against locomotor deficits, and reduced brain Aß levels by clearing the Aß plaque-like deposits. However, confocal microscopy and subcellular fractionation of amyloid-expressing 7PA2 cells demonstrated that PSA localizes to the cytoplasm. Therefore, PSA and Aß are unlikely to be in the same cellular compartment; moreover, when we artificially placed them in the same compartment in flies, we could not detect a direct epistatic interaction. The consequent hypothesis that PSA's suppression of Aß toxicity is indirect was supported by the finding that Aß is not a proteolytic substrate for PSA in vitro. Furthermore, we showed that the enzymatic activity of PSA is not required for rescuing Aß toxicity in neuronal SH-SY5Y cells. We investigated whether the stimulation of autophagy by PSA was responsible for these protective effects. However PSA's promotion of autophagosome fusion with lysosomes required proteolytic activity and so its effect on autophagy is not identical to its protection against Aß toxicity.


Assuntos
Doença de Alzheimer/prevenção & controle , Aminopeptidases/farmacologia , Peptídeos beta-Amiloides/efeitos adversos , Encéfalo/metabolismo , Drosophila melanogaster/metabolismo , Neuroblastoma/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Animais Geneticamente Modificados , Autofagia , Western Blotting , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteólise , Puromicina/farmacologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
8.
Lancet Neurol ; 12(1): 105-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23237905

RESUMO

Endoplasmic reticulum (ER) dysfunction might have an important part to play in a range of neurological disorders, including cerebral ischaemia, sleep apnoea, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, the prion diseases, and familial encephalopathy with neuroserpin inclusion bodies. Protein misfolding in the ER initiates the well studied unfolded protein response in energy-starved neurons during stroke, which is relevant to the toxic effects of reperfusion. The toxic peptide amyloid ß induces ER stress in Alzheimer's disease, which leads to activation of similar pathways, whereas the accumulation of polymeric neuroserpin in the neuronal ER triggers a poorly understood ER-overload response. In other neurological disorders, such as Parkinson's and Huntington's diseases, ER dysfunction is well recognised but the mechanisms by which it contributes to pathogenesis remain unclear. By targeting components of these signalling responses, amelioration of their toxic effects and so the treatment of a range of neurodegenerative disorders might become possible.


Assuntos
Retículo Endoplasmático/patologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Retículo Endoplasmático/fisiologia , Humanos , Doenças do Sistema Nervoso/genética , Dobramento de Proteína , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
9.
FEBS J ; 278(20): 3859-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21624056

RESUMO

Members of the serine protease inhibitor (serpin) superfamily are found in all branches of life and play an important role in the regulation of enzymes involved in proteolytic cascades. Mutants of the serpins result in a delay in folding, with unstable intermediates being cleared by endoplasmic reticulum-associated degradation. The remaining protein is either fully folded and secreted or retained as ordered polymers within the endoplasmic reticulum of the cell of synthesis. This results in a group of diseases termed the serpinopathies, which are typified by mutations of α(1)-antitrypsin and neuroserpin in association with cirrhosis and the dementia familial encephalopathy with neuroserpin inclusion bodies, respectively. Current evidence strongly suggests that polymers of mutants of α(1)-antitrypsin and neuroserpin are linked by the sequential insertion of the reactive loop of one molecule into ß-sheet A of another. The ordered structure of the polymers within the endoplasmic reticulum stimulates nuclear factor-kappa B by a pathway that is independent of the unfolded protein response. This chronic activation of nuclear factor-kappa B may contribute to the cell toxicity associated with mutations of the serpins. We review the pathobiology of the serpinopathies and the development of novel therapeutic strategies for treating the inclusions that cause disease. These include the use of small molecules to block polymerization, stimulation of autophagy to clear inclusions and stem cell technology to correct the underlying molecular defect.


Assuntos
Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/patologia , Peptídeo Hidrolases , Serpinas , Animais , Doenças Genéticas Inatas/genética , Humanos , Mutação , Serpinas/genética , Serpinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...